Intermediate AI Engineer – Python, RAG, Agentic AI, ADK, MCP, GCP, Vertex AI, IBM Watsonx

5 years

0 Lacs

Posted:2 weeks ago| Platform: Linkedin logo

Apply

Work Mode

On-site

Job Type

Full Time

Job Description

Avant de postuler à un emploi, sélectionnez votre langue de préférence parmi les options disponibles en haut à droite de cette page.

Découvrez votre prochaine opportunité au sein d'une organisation qui compte parmi les 500 plus importantes entreprises mondiales. Envisagez des opportunités innovantes, découvrez notre culture enrichissante et travaillez avec des équipes talentueuses qui vous poussent à vous développer chaque jour. Nous savons ce qu’il faut faire pour diriger UPS vers l'avenir : des personnes passionnées dotées d’une combinaison unique de compétences. Si vous avez les qualités, de la motivation, de l'autonomie ou le leadership pour diriger des équipes, il existe des postes adaptés à vos aspirations et à vos compétences d'aujourd'hui et de demain.

Job Summary

Fiche de poste :

We are seeking a highly skilled AI Engineer experience in Software Development, Data Science, or Machine Learning to design, develop, and deploy cutting-edge AI systems leveraging Large Language Models (LLMs), Chatbots, Retrieval-Augmented Generation (RAG), and agentic AI architectures.This role involves hands-on development with LLMs, embeddings, RAG pipelines, and multi-agent systems using modern frameworks like LangChain, LangGraph, and LlamaIndex. The ideal candidate has experience with Vertex AI on GCP and IBM WatsonX, fine-tuning, and Agent Development Kits (ADKs), and is excited about building scalable, production-grade AI platforms.

Responsibilities

  • Agentic AI Development:
Design, build, and deploy

agentic AI systems

using frameworks such as LangChain, LangGraph, and related libraries.Develop and deploy

multi-agent systems

capable of autonomous decision-making, reasoning, planning, and collaboration.
  • RAG Pipelines:
Implement and optimize

retrieval-augmented generation (RAG)

systems, ensuring agents can access and incorporate external knowledge sources for

grounded, accurate responses

.
  • LLM Engineering:
Fine-tune and prompt-engineer LLMs for

task-specific reasoning, planning, and dynamic adaptation

.Work with

LLM/SLM APIs, embeddings, and advanced generative AI techniques

.
  • Enterprise AI Platform:
Lead the development of enterprise-grade AI platforms integrating

LLMs, RAG, embeddings, and agentic AI protocols

.Implement and standardize

Model Context Protocol (MCP)

for consistent context management across models and agents.
  • MLOps & Observability:
Establish and enforce best practices for

MLOps, monitoring, and observability

, ensuring scalable and maintainable AI solutions.
  • Applied AI Prototyping:
Rapidly

prototype, experiment, and iterate

to improve AI agent capabilities.
  • Collaboration & Research:
Participate in the

full research cycle

: literature review, data exploration, experimentation, and presentation of findings.Collaborate effectively with other engineers, researchers, and data scientists.Contribute to the

documentation and standardization

of technical code and practices.

Required Education

Bachelor’s degree

in Computer Science, Engineering, or a related quantitative field.

Master’s or Ph.D.

is a strong plus.

Required Experience

  • 5+ years overall experience in software development, data science, or machine learning.
  • 1+ year of hands-on experience developing AI applications with LLMs and systems such as retrieval-based methods, fine-tuning, or agent-based architectures.
  • 1+ year of experience with frameworks like LangChain, LlamaIndex, OpenAI, or similar tools.

Required Technical Skills

  • Strong programming skills in Python and basics in SQL.
  • Expertise with LLM/SLM APIs, embeddings, and RAG systems.
  • Experience deploying on Google Cloud Platform (GCP) with Vertex AI, and IBM WatsonX.
  • Familiarity with agentic AI protocols and exposure to Agent Development Kits (ADKs).

Preferred Qualifications

  • Experience implementing Model Context Protocol (MCP) for agent coordination.
  • Prior exposure to LangGraph, AutoGen, or related orchestration frameworks.
  • Knowledge of MLOps best practices (CI/CD for ML, observability, monitoring, scaling).
  • Familiarity with responsible AI principles (safety, fairness, interpretability).
  • Experience in enterprise-scale deployments of AI-driven platforms.
  • Contributions to open-source AI/ML projects are a plus.

Type De Contrat

en CDIChez UPS, égalité des chances, traitement équitable et environnement de travail inclusif sont des valeurs clefs auxquelles nous sommes attachés.

Mock Interview

Practice Video Interview with JobPe AI

Start Python Interview
cta

Start Your Job Search Today

Browse through a variety of job opportunities tailored to your skills and preferences. Filter by location, experience, salary, and more to find your perfect fit.

Job Application AI Bot

Job Application AI Bot

Apply to 20+ Portals in one click

Download Now

Download the Mobile App

Instantly access job listings, apply easily, and track applications.

coding practice

Enhance Your Python Skills

Practice Python coding challenges to boost your skills

Start Practicing Python Now