Get alerts for new jobs matching your selected skills, preferred locations, and experience range.
7.0 years
40 Lacs
Kochi, Kerala, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Greater Bhopal Area
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Indore, Madhya Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Visakhapatnam, Andhra Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Chandigarh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Thiruvananthapuram, Kerala, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Dehradun, Uttarakhand, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Vijayawada, Andhra Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Mysore, Karnataka, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Patna, Bihar, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Pune/Pimpri-Chinchwad Area
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
5.0 years
0 Lacs
Pune, Maharashtra, India
On-site
Responsibilities Role description Design, develop, and implement solutions using Oracle BRM 12 (or above), Java Spring Boot, and related technologies. Customize and extend BRM functionality through opcode development and configuration. Develop and maintain integrations between BRM and other systems using APIs and messaging queues. Troubleshoot and resolve complex issues related to BRM, Java applications, and system integrations. Write efficient database queries and shell scripts for automation and data analysis. Work with cloud technologies (e.g., AWS, GCP, Azure) to deploy and manage applications. Utilize and manage data in various databases (Oracle, DynamoDB, NoSQL). Integrate with messaging queues (Kafka, AWS SQS). Contribute to the design and implementation of microservices. Monitor application performance and identify areas for optimization. Participate in code reviews and provide constructive feedback. Collaborate effectively with other developers, testers, and business stakeholders. Provide support during US business hours for a few hours. Must-Have Skills Oracle BRM 12 (or above): Experience with opcode customization and configuration. Java Development: Proficiency in Java, with hands-on experience using Spring Boot. Database Queries: Strong experience with SQL, PL/SQL, and shell scripting for automation and data analysis. Cloud Technologies: Hands-on experience with at least one of the major cloud platforms (AWS, GCP, Azure). Messaging Systems: Experience with systems like Kafka and AWS SQS. Microservices: Understanding of microservice design patterns and their implementation. Debugging & Troubleshooting: Excellent debugging skills and problem-solving ability. Communication: Strong written and verbal communication skills to work with diverse teams. Good-to-Have Skills Monitoring Tools: Familiarity with tools like Chaossearch, Kibana, Grafana, Datadog. Containerization: Experience with Docker and Kubernetes. Apache Airflow: Experience with workflow orchestration. Additional Cloud Platforms: Knowledge of other cloud platforms beyond AWS, GCP, or Azure. Experience Range 5+ years of hands-on experience with Oracle BRM, Java Spring Boot, and cloud technologies. Qualifications Education: Bachelor’s degree in Computer Science or a related field. Skills Oracle Brm,Javaspringboot,GCP Show more Show less
Posted 1 day ago
0 years
0 Lacs
Pune, Maharashtra, India
On-site
🔹 Key Responsibilities: Design, develop, and maintain Scala-based microservices Build scalable and reactive systems using Akka or LEGOM framework Implement real-time data pipelines with Apache Pulsar Develop and optimize data access using Slick Connector and PostgreSQL Build advanced search capabilities using ElasticSearch Work on containerized applications and deploy them using Kubernetes Set up and manage CI/CD pipelines using GitLab Collaborate with cross-functional teams to ensure on-time, high-quality deliveries Follow best practices in testing, performance tuning, and security 🔹 Required Skills: Strong hands-on experience with Scala Proficient in Akka or LEGOM framework Expertise in Microservices architecture and containerization Knowledge of Apache Pulsar for streaming Experience in PostgreSQL and Slick Connector for DB integration Proficient with ElasticSearch Familiarity with GitLab , CI/CD Pipelines , and Kubernetes (K8s) Excellent problem-solving and debugging skills Strong communication and collaboration abilities - Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Noida, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Ghaziabad, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Agra, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Noida, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
3.0 years
0 Lacs
Noida, Uttar Pradesh, India
On-site
Are you a passionate Spark and Scala developer looking for an exciting opportunity to work on cutting-edge big data projects? Look no further! Delhivery is seeking a talented and motivated Spark & Scala Expert to join our dynamic team. Responsibilities: Develop and optimize Spark applications to process large-scale data efficiently Collaborate with cross-functional teams to design and implement data-driven solutions Troubleshoot and resolve performance issues in Spark jobs Stay up-to-date with the latest trends and advancements in Spark and Scala technologies. Requirements: Proficient in Redshift, data pipelines, Kafka, Real-time streaming, connectors, etc 3+ years of professional experience with Big Data systems, pipelines, and data processing Strong experience with Apache Spark, Spark Streaming, and Spark SQL Solid understanding of distributed systems, Databases, System design, and big data processing framework Familiarity with Hadoop ecosystem components (HDFS, Hive, HBase) is a plus Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Chennai, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
4.0 years
0 Lacs
Chennai, Tamil Nadu, India
On-site
Role Description Hiring Location: Mumbai/Chennai/Gurgaon Job Summary We are seeking a Lead I in Software Engineering with 4 to 7 years of experience in software development or software architecture. The ideal candidate will possess a strong background in Angular and Java, with the ability to lead a team and drive technical projects. A Bachelor's degree in Engineering or Computer Science, or equivalent experience, is required. Responsibilities Interact with technical personnel and team members to finalize requirements. Write and review detailed specifications for the development of system components of moderate complexity. Collaborate with QA and development team members to translate product requirements into software designs. Implement development processes, coding best practices, and conduct code reviews. Operate in various development environments (Agile, Waterfall) while collaborating with key stakeholders. Resolve technical issues as necessary. Perform all other duties as assigned. Must-Have Skills Strong proficiency in Angular 1.X (70% Angular and 30% Java OR 50% Angular and 50% Java). Java/J2EE; Familiarity with Singleton and MVC design patterns. Strong proficiency in SQL and/or MySQL, including optimization techniques (at least MySQL). Experience using tools such as Eclipse, GIT, Postman, JIRA, and Confluence. Knowledge of test-driven development. Solid understanding of object-oriented programming. Good-to-Have Skills Expertise in Spring Boot, Microservices, and API development. Familiarity with OAuth2.0 patterns (experience with at least 2 patterns). Knowledge of Graph Databases (e.g., Neo4J, Apache Tinkerpop, Gremlin). Experience with Kafka messaging. Familiarity with Docker, Kubernetes, and cloud development. Experience with CI/CD tools like Jenkins and GitHub Actions. Knowledge of industry-wide technology trends and best practices. Experience Range 4 to 7 years of relevant experience in software development or software architecture. Education Bachelor’s degree in Engineering, Computer Science, or equivalent experience. Additional Information Strong communication skills, both oral and written. Ability to interface competently with internal and external technology resources. Advanced knowledge of software development methodologies (Agile, etc.). Experience in setting up and maintaining distributed applications in Unix/Linux environments. Ability to complete complex bug fixes and support production issues. Skills Angular 1.X,Java 11+,Sql The expectation is 60-70% in Angular primarily and 30-40% in Java. Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Coimbatore, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Vellore, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Madurai, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Surat, Gujarat, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Ahmedabad, Gujarat, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
Upload Resume
Drag or click to upload
Your data is secure with us, protected by advanced encryption.
Apache is a widely used software foundation that offers a range of open-source software solutions. In India, the demand for professionals with expertise in Apache tools and technologies is on the rise. Job seekers looking to pursue a career in Apache-related roles have a plethora of opportunities in various industries. Let's delve into the Apache job market in India to gain a better understanding of the landscape.
These cities are known for their thriving IT sectors and see a high demand for Apache professionals across different organizations.
The salary range for Apache professionals in India varies based on experience and skill level. - Entry-level: INR 3-5 lakhs per annum - Mid-level: INR 6-10 lakhs per annum - Experienced: INR 12-20 lakhs per annum
In the Apache job market in India, a typical career path may progress as follows: 1. Junior Developer 2. Developer 3. Senior Developer 4. Tech Lead 5. Architect
Besides expertise in Apache tools and technologies, professionals in this field are often expected to have skills in: - Linux - Networking - Database Management - Cloud Computing
As you embark on your journey to explore Apache jobs in India, it is essential to stay updated on the latest trends and technologies in the field. By honing your skills and preparing thoroughly for interviews, you can position yourself as a competitive candidate in the Apache job market. Stay motivated, keep learning, and pursue your dream career with confidence!
Browse through a variety of job opportunities tailored to your skills and preferences. Filter by location, experience, salary, and more to find your perfect fit.
We have sent an OTP to your contact. Please enter it below to verify.
Accenture
36723 Jobs | Dublin
Wipro
11788 Jobs | Bengaluru
EY
8277 Jobs | London
IBM
6362 Jobs | Armonk
Amazon
6322 Jobs | Seattle,WA
Oracle
5543 Jobs | Redwood City
Capgemini
5131 Jobs | Paris,France
Uplers
4724 Jobs | Ahmedabad
Infosys
4329 Jobs | Bangalore,Karnataka
Accenture in India
4290 Jobs | Dublin 2