Get alerts for new jobs matching your selected skills, preferred locations, and experience range.
8.0 years
0 Lacs
Gurugram, Haryana, India
On-site
Requisition Number: 101352 Architect I - Data Location: This is a hybrid opportunity in Delhi-NCR, Bangalore, Hyderabad, Gurugram area. Insight at a Glance 14,000+ engaged teammates globally with operations in 25 countries across the globe. Received 35+ industry and partner awards in the past year $9.2 billion in revenue #20 on Fortune’s World's Best Workplaces™ list #14 on Forbes World's Best Employers in IT – 2023 #23 on Forbes Best Employers for Women in IT- 2023 $1.4M+ total charitable contributions in 2023 by Insight globally Now is the time to bring your expertise to Insight. We are not just a tech company; we are a people-first company. We believe that by unlocking the power of people and technology, we can accelerate transformation and achieve extraordinary results. As a Fortune 500 Solutions Integrator with deep expertise in cloud, data, AI, cybersecurity, and intelligent edge, we guide organisations through complex digital decisions. About The Role As an Architect I , you will focus on leading our Business Intelligence (BI) and Data Warehousing (DW) initiatives. We will count on you to be involved in designing and implementing end-to-end data pipelines using cloud services and data frameworks. Along the way, you will get to: Architect and implement end-to-end data pipelines, data lakes, and warehouses using modern cloud services and architectural patterns. Develop and build analytics tools that deliver actionable insights to the business. Integrate and manage large, complex data sets to meet strategic business requirements. Optimize data processing workflows using frameworks such as PySpark. Establish and enforce best practices for data quality, integrity, security, and performance across the entire data ecosystem. Collaborate with cross-functional teams to prioritize deliverables and design solutions. Develop compelling business cases and return on investment (ROI) analyses to support strategic initiatives. Drive process improvements for enhanced data delivery speed and reliability. Provide technical leadership, training, and mentorship to team members, promoting a culture of excellence. What We’re Looking For 8+ years in Business Intelligence (BI) solution design, with 6+ years specializing in ETL processes and data warehouse architecture. 6+ years of hands-on experience with Azure Data services including Azure Data Factory, Azure Databricks, Azure Data Lake Gen2, Azure SQL DB, Synapse, Power BI, and MS Fabric. Strong Python and PySpark software engineering proficiency, coupled with a proven track record of building and optimizing big data pipelines, architectures, and datasets. Proficient in transforming, processing, and extracting insights from vast, disparate datasets, and building robust data pipelines for metadata, dependency, and workload management. Familiarity with software development lifecycles/methodologies, particularly Agile. Experience with SAP/ERP/Datasphere data modeling is a significant plus. Excellent presentation and collaboration skills, capable of creating formal documentation and supporting cross-functional teams in a dynamic environment. Strong problem-solving, time management, and organizational abilities. Keen to learn new languages and technologies continually. Graduate degree in Computer Science, Statistics, Informatics, Information Systems, or an equivalent field What You Can Expect We’re legendary for taking care of you, your family and to help you engage with your local community. We want you to enjoy a full, meaningful life and own your career at Insight. Some of our benefits include: Freedom to work from another location—even an international destination—for up to 30 consecutive calendar days per year. Medical Insurance Health Benefits Professional Development: Learning Platform and Certificate Reimbursement Shift Allowance But what really sets us apart are our core values of Hunger, Heart, and Harmony, which guide everything we do, from building relationships with teammates, partners, and clients to making a positive impact in our communities. Join us today, your ambITious journey starts here. When you apply, please tell us the pronouns you use and any reasonable adjustments you may need during the interview process. At Insight, we celebrate diversity of skills and experience so even if you don’t feel like your skills are a perfect match - we still want to hear from you! Today's Talent Leads Tomorrow's Success. Learn More About Insight https://www.linkedin.com/company/insight/ Insight is an equal opportunity employer, and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, disability status, protected veteran status, sexual orientation or any other characteristic protected by law. Insight India Location:Level 16, Tower B, Building No 14, Dlf Cyber City In It/Ites Sez, Sector 24 &25 A Gurugram Gurgaon Hr 122002 India Show more Show less
Posted 15 hours ago
0 years
0 Lacs
Raipur, Chhattisgarh, India
On-site
Role Summary We are seeking a highly motivated and skilled Data Engineer to join our data and analytics team. This role is ideal for someone with strong experience in building scalable data pipelines, working with modern lakehouse architectures, and deploying data solutions on Microsoft Azure. You’ll be instrumental in developing, orchestrating, and maintaining our real-time and batch data infrastructure using tools like Apache Spark, Apache Kafka, Apache Airflow, Azure Data Services, and modern DevOps practices. Key Responsibilities Design and implement ETL/ELT data pipelines for structured and unstructured data using Azure Data Factory, Databricks, or Apache Spark. Work with Azure Blob Storage, Data Lake, and Synapse Analytics to build scalable data lakes and warehouses. Develop real-time data ingestion pipelines using Apache Kafka, Apache Flink, or Apache Beam. Build and schedule jobs using orchestration tools like Apache Airflow or Dagster. Perform data modeling using Kimball methodology for building dimensional models in Snowflake or other data warehouses. Implement data versioning and transformation using DBT and Apache Iceberg or Delta Lake. Manage data cataloging and lineage using tools like Marquez or Collibra. Collaborate with DevOps teams to containerize solutions using Docker, manage infrastructure with Terraform, and deploy on Kubernetes. Setup and maintain monitoring and alerting systems using Prometheus and Grafana for performance and reliability. Required Skills & Qualifications Programming & Scripting: Proficiency in Python, with strong knowledge of OOP and data structures & algorithms. Comfortable working in Linux environments for development and deployment. Database Technologies: Strong command over SQL and understanding of relational (DBMS) and NoSQL databases. Big Data & Real-Time Processing: Solid experience with Apache Spark (PySpark/Scala). Familiarity with real-time processing tools like Kafka, Flink, or Beam. Orchestration & Scheduling: Hands-on experience with Airflow, Dagster, or similar orchestration tools. Cloud Platform: Deep experience with Microsoft Azure, especially Azure Data Factory, Blob Storage, Synapse, Azure Functions, etc. AZ-900 or other Azure certifications are a plus. Lakehouse & Warehousing Knowledge of dimensional modeling, Snowflake, Apache Iceberg, and Delta Lake. Understanding of modern Lakehouse architecture and related best practices. Data Cataloging & Governance Familiarity with Marquez, Collibra, or other cataloging tools. DevOps & CI/CD Experience with Terraform, Docker, Kubernetes, and Jenkins or equivalent CI/CD tools. Monitoring & Logging Proficiency in setting up dashboards and alerts with Prometheus and Grafana. Note: - Immediate joiner will be preferred. Show more Show less
Posted 16 hours ago
0.6 - 1.6 years
0 Lacs
Bengaluru East, Karnataka, India
On-site
Visa is a world leader in payments and technology, with over 259 billion payments transactions flowing safely between consumers, merchants, financial institutions, and government entities in more than 200 countries and territories each year. Our mission is to connect the world through the most innovative, convenient, reliable, and secure payments network, enabling individuals, businesses, and economies to thrive while driven by a common purpose – to uplift everyone, everywhere by being the best way to pay and be paid. Make an impact with a purpose-driven industry leader. Join us today and experience Life at Visa. Job Description Work collaboratively with Data Analyst, Data Scientists Software Engineers and cross-functional partners to design and deploy data pipelines to deliver analytical solution. Responsible for building data pipelines, data model, data marts, data warehouse including OLAP cube in multidimensional data model with proficiency / conceptual understanding of PySpark and SQL scripting. Responsible for the design, development, testing, implementation and support functional semantic data marts using various modeling techniques from underlying data stores/data warehouse and facilitate Business Intelligence Data Solutions Experience in building reports, dashboards, scorecards & visualization using Tableau/ Power BI and other data analysis techniques to collect, explore, and extract insights from structured and unstructured data. Responsible for AI/ML model Utilizing machine learning, statistical methods, data mining, forecasting and predictive modeling techniques. Following Dev Ops Model, Agile implementation, CICD method of deployment & JIRA creation / management for projects. Define and build technical/data documentation and experience with code version control systems (for e.g., git). Assist owner with periodic evaluation of next generation & modernization of platform. Exhibit Leadership Principles such as Accountability & Ownership of High Standards: Given the criticality & sensitivity of data . Customer Focus : Going Above & Beyond in finding innovative solution and product to best serve the business needs and there-by Visa. This is a hybrid position. Expectation of days in office will be confirmed by your hiring manager. Qualifications Basic Qualifications • Bachelors degree or •0.6-1.6 years of work experience with a Bachelor’s Degree or Master's Degree in computer / information science with relevant work experience in IT industry •Enthusiastic, energetic and self-learning candidates with loads of curiosity and flexibility. •Proven hands-on capability in the development of data pipelines and data engineering. •Experience in creating data-driven business solutions and solving data problems using technologies such as Hadoop, Hive, and Spark. •Ability to program in one or more scripting languages such as Python and one or more programming languages such as Java or Scala. •Familiarity with AI-centric libraries like TensorFlow, PyTorch, and Keras. •Familiarity with machine learning algorithms and statistical models is beneficial. •Critical ability to interpret complex data and provide actionable insights. This encompasses statistical analysis, predictive modeling, and data visualization. •Extended experience in Agile Release Management practices, governance, and planning. •Strong leadership skills with demonstrated ability to lead global, cross-functional teams. Additional Information Visa is an EEO Employer. Qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, sexual orientation, gender identity, disability or protected veteran status. Visa will also consider for employment qualified applicants with criminal histories in a manner consistent with EEOC guidelines and applicable local law. Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Kochi, Kerala, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Greater Bhopal Area
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Indore, Madhya Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Visakhapatnam, Andhra Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Chandigarh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Thiruvananthapuram, Kerala, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Dehradun, Uttarakhand, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Vijayawada, Andhra Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Mysore, Karnataka, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Patna, Bihar, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Pune/Pimpri-Chinchwad Area
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
5.0 years
0 Lacs
Pune, Maharashtra, India
On-site
Eviden, part of the Atos Group, with an annual revenue of circa € 5 billion is a global leader in data-driven, trusted and sustainable digital transformation. As a next generation digital business with worldwide leading positions in digital, cloud, data, advanced computing and security, it brings deep expertise for all industries in more than 47 countries. By uniting unique high-end technologies across the full digital continuum with 47,000 world-class talents, Eviden expands the possibilities of data and technology, now and for generations to come. Role Overview The Senior Tech Lead - AWS Data Engineering leads the design, development and optimization of data solutions on the AWS platform. The jobholder has a strong background in data engineering, cloud architecture, and team leadership, with a proven ability to deliver scalable and secure data systems. Responsibilities Lead the design and implementation of AWS-based data architectures and pipelines. Architect and optimize data solutions using AWS services such as S3, Redshift, Glue, EMR, and Lambda. Provide technical leadership and mentorship to a team of data engineers. Collaborate with stakeholders to define project requirements and ensure alignment with business goals. Ensure best practices in data security, governance, and compliance. Troubleshoot and resolve complex technical issues in AWS data environments. Stay updated on the latest AWS technologies and industry trends. Key Technical Skills & Responsibilities Overall 10+Yrs of Experience in IT Minimum 5-7 years in design and development of cloud data platforms using AWS services Must have experience of design and development of data lake / data warehouse / data analytics solutions using AWS services like S3, Lake Formation, Glue, Athena, EMR, Lambda, Redshift Must be aware about the AWS access control and data security features like VPC, IAM, Security Groups, KMS etc Must be good with Python and PySpark for data pipeline building. Must have data modeling including S3 data organization experience Must have an understanding of hadoop components, No SQL database, graph database and time series database; and AWS services available for those technologies Must have experience of working with structured, semi-structured and unstructured data Must have experience of streaming data collection and processing. Kafka experience is preferred. Experience of migrating data warehouse / big data application to AWS is preferred . Must be able to use Gen AI services (like Amazon Q) for productivity gain Eligibility Criteria Bachelor’s degree in Computer Science, Data Engineering, or a related field. Extensive experience with AWS data services and tools. AWS certification (e.g., AWS Certified Data Analytics - Specialty). Experience with machine learning and AI integration in AWS environments. Strong understanding of data modeling, ETL/ELT processes, and cloud integration. Proven leadership experience in managing technical teams. Excellent problem-solving and communication skills. Our Offering Global cutting-edge IT projects that shape the future of digital and have a positive impact on environment. Wellbeing programs & work-life balance - integration and passion sharing events. Attractive Salary and Company Initiative Benefits Courses and conferences Attractive Salary Hybrid work culture Let’s grow together. Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Noida, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Ghaziabad, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Agra, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Noida, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
3.0 - 5.0 years
0 Lacs
Noida, Uttar Pradesh, India
On-site
Data Scientist Job Description Position: Data Scientist Experience Level: [Junior/Mid-level] - 3-5 years Job Summary We are seeking a Data Scientist to join our team to analyze complex datasets, develop machine learning models, and provide data-driven insights to support business decisions. Key Responsibilities Data Analysis & Exploration Perform comprehensive exploratory data analysis (EDA) on large datasets. Identify patterns, trends, and anomalies in data. Conduct statistical analysis to validate business hypotheses. Create data visualizations to communicate findings effectively. Assess and ensure data quality and integrity. Write complex SQL queries to extract and manipulate data Machine Learning & Modeling Design and develop machine learning models for business problems like (XG Boost, Logistic Regression, DNN, RNN etc) Implement supervised and unsupervised learning algorithms Perform feature engineering and selection Evaluate model performance using appropriate metrics Deploy and monitor machine learning models in production Programming & Development Develop data analysis scripts and automation tools using Python Build data pipelines and ETL processes Create reusable code libraries and functions Maintain version control and documentation standards Required Qualifications Technical Skills SQL: Advanced proficiency in writing complex queries, joins, subqueries, and database optimization Python: Strong programming skills in Python for data analysis and machine learning Exploratory Data Analysis: Expertise in EDA techniques, statistical analysis, and data visualization Machine Learning: Solid understanding of ML algorithms, model evaluation, and validation techniques Statistics: Knowledge of statistical methods, hypothesis testing, and experimental design Knowledge of any cloud like AWS, GCP or Azure is good to have Familiarity with version control systems Experience with containerization and deployment tools Good to Have:- Worked on GenAI based Projects Using GenAI for driving productivity in your work. Knowledge of PySpark is a plus Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Chennai, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Coimbatore, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Vellore, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
7.0 years
40 Lacs
Madurai, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 16 hours ago
Upload Resume
Drag or click to upload
Your data is secure with us, protected by advanced encryption.
Browse through a variety of job opportunities tailored to your skills and preferences. Filter by location, experience, salary, and more to find your perfect fit.
Accenture
36723 Jobs | Dublin
Wipro
11788 Jobs | Bengaluru
EY
8277 Jobs | London
IBM
6362 Jobs | Armonk
Amazon
6322 Jobs | Seattle,WA
Oracle
5543 Jobs | Redwood City
Capgemini
5131 Jobs | Paris,France
Uplers
4724 Jobs | Ahmedabad
Infosys
4329 Jobs | Bangalore,Karnataka
Accenture in India
4290 Jobs | Dublin 2