Data Scientist

3 - 7 years

0 Lacs

Posted:5 days ago| Platform: Shine logo

Apply

Work Mode

On-site

Job Type

Full Time

Job Description

As a Deep Learning Engineer, you will be responsible for developing, training, and deploying computer vision models to tackle complex visual challenges. You will engage in cutting-edge technology within image processing, object detection, and video analysis, collaborating with diverse teams to create impactful real-world applications. - Develop and optimize computer vision models for object detection (YOLO, Faster R-CNN, SSD) and image classification (ResNet, MobileNet, EfficientNet, ViTs). - Work with OCR technologies (Tesseract, EasyOCR, CRNN, TrOCR) for text extraction from images. - Utilize PyTorch, TensorFlow, and OpenCV for deep learning and image processing tasks. - Implement sequence-based models such as RNNs, LSTMs, and GRUs for vision-related tasks. - Optimize software for real-time performance on multiple platforms. - Implement and deploy AI models using Flask/FastAPI and integrate with SQL/NoSQL databases. - Utilize Git/GitHub for version control and team collaboration. - Apply ML algorithms like regression, decision trees, and clustering as required. - Review code, mentor team members, and enhance model efficiency. - Stay updated with advancements in deep learning and multimodal AI. **Qualifications Required:** - Proficiency in Python for AI development. - Experience with PyTorch, TensorFlow, and OpenCV. - Knowledge of object detection (YOLO, Faster R-CNN, SSD) and image classification (ResNet, MobileNet, EfficientNet, ViTs). - Experience with OCR technologies (Tesseract, EasyOCR, CRNN, TrOCR). - Familiarity with RNNs, LSTMs, GRUs for sequence-based tasks. - Experience with Generative Adversarial Networks (GANs) and Diffusion Models for image generation. - Understanding of REST APIs (Flask/FastAPI) and SQL/NoSQL databases. - Strong problem-solving and real-time AI optimization skills. - Experience with Git/GitHub for version control. - Knowledge of Docker, Kubernetes, and model deployment at scale on serverless and on-prem platforms. - Understanding of vector databases (FAISS, Milvus). This job requires proficiency in deep learning, computer vision, and AI technologies, along with the ability to collaborate effectively with cross-functional teams to drive impactful solutions. As a Deep Learning Engineer, you will be responsible for developing, training, and deploying computer vision models to tackle complex visual challenges. You will engage in cutting-edge technology within image processing, object detection, and video analysis, collaborating with diverse teams to create impactful real-world applications. - Develop and optimize computer vision models for object detection (YOLO, Faster R-CNN, SSD) and image classification (ResNet, MobileNet, EfficientNet, ViTs). - Work with OCR technologies (Tesseract, EasyOCR, CRNN, TrOCR) for text extraction from images. - Utilize PyTorch, TensorFlow, and OpenCV for deep learning and image processing tasks. - Implement sequence-based models such as RNNs, LSTMs, and GRUs for vision-related tasks. - Optimize software for real-time performance on multiple platforms. - Implement and deploy AI models using Flask/FastAPI and integrate with SQL/NoSQL databases. - Utilize Git/GitHub for version control and team collaboration. - Apply ML algorithms like regression, decision trees, and clustering as required. - Review code, mentor team members, and enhance model efficiency. - Stay updated with advancements in deep learning and multimodal AI. **Qualifications Required:** - Proficiency in Python for AI development. - Experience with PyTorch, TensorFlow, and OpenCV. - Knowledge of object detection (YOLO, Faster R-CNN, SSD) and image classification (ResNet, MobileNet, EfficientNet, ViTs). - Experience with OCR technologies (Tesseract, EasyOCR, CRNN, TrOCR). - Familiarity with RNNs, LSTMs, GRUs for sequence-based tasks. - Experience with Generative Adversarial Networks (GANs) and Diffusion Models for image generation. - Understanding of REST APIs (Flask/FastAPI) and SQL/NoSQL databases. - Strong problem-solving and real-time AI optimization skills. - Experience with Git/GitHub for version control. - Knowledge of Docker, Kubernetes, and model deployment at scale on serverless and on-prem platforms. - Understanding of vector databases (FAISS, Milvus). This job requires proficiency in deep learning, computer vision, and AI technologies, along with the ability to collaborate effectively with cross-functional teams to drive impactful solutions.

Mock Interview

Practice Video Interview with JobPe AI

Start Python Interview
cta

Start Your Job Search Today

Browse through a variety of job opportunities tailored to your skills and preferences. Filter by location, experience, salary, and more to find your perfect fit.

Job Application AI Bot

Job Application AI Bot

Apply to 20+ Portals in one click

Download Now

Download the Mobile App

Instantly access job listings, apply easily, and track applications.

coding practice

Enhance Your Python Skills

Practice Python coding challenges to boost your skills

Start Practicing Python Now

RecommendedJobs for You

ahmedabad, chennai, bengaluru

mumbai, delhi / ncr, bengaluru