Vector Database & Embedding Engineer RAG Pipeline Development

3 - 8 years

12 - 18 Lacs

Posted:2 days ago| Platform: Naukri logo

Apply

Work Mode

Work from Office

Job Type

Full Time

Job Description

Job Summary

Vector Database & Embedding Engineer

vector DBs (pgvector, Pinecone, Chroma, Milvus, Weaviate)

high-accuracy, high-recall retrieval systems

Key Responsibilities

1. Vector Database Design & Management

  • Setup, configure and manage vector DBs such as:
    • pgvector

      ,

      FAISS

      ,

      Pinecone

      ,

      Weaviate

      ,

      Chroma

      ,

      Milvus

  • Design schemas for:
    • Multi-embedding storage
    • Metadata storage
    • Document-level and chunk-level indexing
  • Implement filtering, similarity search, MMR, reranking, and index optimization.

2. Embedding Pipeline Development

  • Select, fine-tune, or run embedding models such as:
    • Sentence-BERT, BGE, GTE, Instructor, FlagEmbedding
    • OpenAI Embeddings / Azure OpenAI
    • HuggingFace Transformers
  • Build:
    • Batch embedding pipelines
    • Real-time embedding APIs
    • Multi-encoder architecture for hybrid search
  • Evaluate embedding quality, dimensionality, and vector drift.

3. Chunking, Indexing & Document Processing

  • Design advanced

    chunking strategies

    :
    • Fixed window chunking
    • Sliding window
    • Semantic chunking
    • Layout-aware chunking (tables, lists, multi-column)
  • Extract content from:
    • PDFs, HTML pages, Office files, emails, scanned docs
  • Build a complete indexing pipeline:
    • Preprocessing Chunking Embedding Vector DB upsert Metadata linking

4. RAG Optimization & Retrieval Tuning

  • Optimize retrieval for:
    • Accuracy
    • Latency
    • Recall / diversity
  • Implement hybrid search:
    • Vector + Keyword

    • Vector + Graph (GraphRAG)

  • Build ranking stacks using rerankers (Cross-Encoders).

5. Backend & API Development

  • Build APIs for:
    • Document ingestion
    • Embedding generation
    • Retrieval & context merging
  • Serve embedding + vector workflows using Python/FastAPI or Node.js.
  • Integrate vector search with LLM prompt templates.

6. Monitoring, Evaluation & Scaling

  • Evaluate retrieval metrics (precision@k, recall@k, MRR).
  • Implement observability for indexing, failures, and accuracy degradation.
  • Scale vector DBs horizontally & vertically based on dataset size.

7. Collaboration & Documentation

  • Work with LLM engineers to design end-to-end RAG pipelines.
  • Maintain documentation for:
    • Embedding configs
    • Chunking logic
    • Vector schemas
    • Retrieval settings
  • Train internal teams on best practices.

Required Technical Skills

Vector Databases

  • Strong hands-on with:
    • pgvector

      (must-have for enterprise)
    • Pinecone

      ,

      Chroma

      ,

      Weaviate

      ,

      Milvus

      , or

      FAISS

  • Deep knowledge of:
    • Index types (HNSW, IVFFlat, PQ, IVF-PQ)
    • Similarity metrics (cosine, dot, euclidean)
    • Index tuning (ef_search, ef_construction, cluster size)

Embeddings

  • Experience generating and evaluating embeddings using:
    • OpenAI / Azure OpenAI
    • InstructorXL, BGE, GTE, FlagEmbedding
    • Sentence-BERT / HF embeddings
  • Knowledge of:
    • Embedding dimensionality
    • Tokenization & vector normalization
    • Multi-embedding pipelines

Chunking & Preprocessing

  • Strong experience with document processing libraries:
    • PDFPlumber, PyMuPDF, Textract, Tika
  • Designing chunking strategies for:
    • PDFs
    • Web pages
    • Product catalogs
    • Emails & logs
  • Metadata creation and linking strategies.

Backend / Engineering

  • Python (preferred), Node.js
  • FastAPI / Flask
  • SQL & NoSQL
  • ETL pipelines (Airflow / custom)
  • Docker, Linux environments

Experience Required

  • Total Experience:

    26 years
  • Relevant Vector Search / Embedding Experience:

    1–3 years
  • Experience in building real RAG systems (highly preferred).

Preferred Skills

  • Knowledge of:
    • LangChain or LlamaIndex
    • Rerankers (Cross-Encoders)
    • Hybrid retrieval
    • Graph + Vector hybrid search
  • Experience in:
    • OCR processing
    • Data extraction
    • Enterprise search systems
  • Familiarity with:
    • RedisSearch
    • ElasticSearch vector search

Mock Interview

Practice Video Interview with JobPe AI

Start Job-Specific Interview
cta

Start Your Job Search Today

Browse through a variety of job opportunities tailored to your skills and preferences. Filter by location, experience, salary, and more to find your perfect fit.

Job Application AI Bot

Job Application AI Bot

Apply to 20+ Portals in one click

Download Now

Download the Mobile App

Instantly access job listings, apply easily, and track applications.

coding practice

Enhance Your Skills

Practice coding challenges to boost your skills

Start Practicing Now
Tenth Planet Technologies logo
Tenth Planet Technologies

Software Development

Innovation City

RecommendedJobs for You