Get alerts for new jobs matching your selected skills, preferred locations, and experience range.
5.0 years
0 Lacs
Pune, Maharashtra, India
On-site
We are looking for a Senior .NET Core and Azure Cloud Developer with 3–5 years of experience to contribute to the design, development, and deployment of modern, cloud-native applications. The ideal candidate has solid hands-on experience building scalable backend systems using .NET Core and Microsoft Azure, and can work collaboratively in agile teams. Required Skills: · 3–5 years of professional development experience in .NET Core / C#. · Strong experience with Azure Cloud platform and core services (e.g., App Services, Azure Functions, Azure SQL, Cosmos DB, Storage Accounts). · Solid understanding of RESTful APIs, Web APIs, and microservices. · Experience with source control (Git) and CI/CD pipelines. · Familiarity with DevOps practices, infrastructure-as-code (Terraform), and deployment automation. · Basic knowledge of security practices in cloud applications (authentication, authorization, encryption). · Strong analytical and problem-solving skills. · Good communication and teamwork skills. Preferred Qualifications: · Exposure to front-end frameworks (e.g., Angular or React) is a plus. · Azure Certification (e.g., AZ-204 or AZ-900) is an advantage. · Familiarity with healthcare or finance domain projects is a bonus. Show more Show less
Posted 1 day ago
5.0 years
0 Lacs
Pune, Maharashtra, India
Remote
At NiCE, we don’t limit our challenges. We challenge our limits. Always. We’re ambitious. We’re game changers. And we play to win. We set the highest standards and execute beyond them. And if you’re like us, we can offer you the ultimate career opportunity that will light a fire within you. So, what’s the role all about? NICE APA is a comprehensive platform that combines Robotic Process Automation, Desktop Automation, Desktop Analytics, AI and Machine Learning solutions as Neva Discover NICE APA is more than just RPA, it's a full platform that brings together automation, analytics, and AI to enhance both front-office and back-office operations. It’s widely used in industries like banking, insurance, telecom, healthcare, and customer service We are seeking a Senior/Specialist Technical Support Engineer with a strong understanding of RPA applications and exceptional troubleshooting skills. The ideal candidate will have hands-on experience in Application Support, the ability to inspect and analyze RPA solutions and Application Server (e.g., Tomcat, Authentication, certificate renewal), and a solid understanding of RPA deployments in both on-premises and cloud-based environments (such as AWS). You should be comfortable supporting hybrid RPA architectures, handling bot automation, licensing, and infrastructure configuration in various environments. Familiarity with cloud-native services used in automation (e.g., AMQ queues, storage, virtual machines, containers) is a plus. Additionally, you’ll need a working knowledge of underlying databases and query optimization to assist with performance and integration issues. You will be responsible for diagnosing and resolving technical issues, collaborating with development and infrastructure teams, contributing to documentation and knowledge bases, and ensuring a seamless and reliable customer experience across multiple systems and platforms How will you make an impact? Interfacing with various R&D groups, Customer Support teams, Business Partners and Customers Globally to address and resolve product issues. Maintain quality and on-going internal and external communication throughout your investigation. Provide high level of support and minimize R&D escalations. Prioritize daily missions/cases and mange critical issues and situations. Contribute to the Knowledge Base, document troubleshooting and problem resolution steps and participate in Educating/Mentoring other support engineers. Willing to perform on call duties as required. Excellent problem-solving skills with the ability to analyze complex issues and implement effective solutions. Good communication skills with the ability to interact with technical and non-technical stakeholders. Have you got what it takes? Minimum of 5 to 7 years of experience in supporting global enterprise customers. Monitor, troubleshoot, and maintain RPA bots in production environments. Monitor, troubleshoot, system performance, application health, and resource usage using tools like Prometheus, Grafana, or similar Data Analytics - Analyze trends, patterns, and anomalies in data to identify product bugs Familiarity with ETL processes and data pipelines - Advantage Provide L1/L2/L3 support for RPA application, ensuring timely resolution of incidents and service requests Familiarity applications running on Linux-based Kubernetes clusters Troubleshoot and resolve incidents related to pods, services, and deployments Provide technical support for applications running on both Windows and Linux platforms, including troubleshooting issues, diagnosing problems, and implementing solutions to ensure optimal performance. Familiarity with Authentication methods like WinSSO and SAML. Knowledge in Windows/Linux Hardening like TLS enforcement, Encryption Enforcement, Certificate Configuration Working and Troubleshooting knowledge in Apache Software components like Tomcat, Apache and ActiveMQ. Working and Troubleshooting knowledge in SVN/Version Control applications Knowledge in DB schema, structure, SQL queries (DML, DDL) and troubleshooting Collect and analyze logs from servers, network devices, applications, and security tools to identify Environment/Application issues. Knowledge in terminal server (Citrix)- advantage Basic understanding on AWS Cloud systems. Network troubleshooting skills (working with different tools) Certification in RPA platforms and working knowledge in RPA application development/support – advantage. NICE Certification - Knowledge in RTI/RTS/APA products – Advantage Integrate NICE's applications with customers on-prem and cloud-based 3rd party tools and applications to ingest/transform/store/validate data. Shift- 24*7 Rotational Shift (include night shift) Other Required Skills: Excellent verbal and written communication skills Strong troubleshooting and problem-solving skills. Self-motivated and directed, with keen attention to details. Team Player - ability to work well in a team-oriented, collaborative environment. Enjoy NICE-FLEX! At NICE, we work according to the NICE-FLEX hybrid model, which enables maximum flexibility: 2 days working from the office and 3 days of remote work, each week. Naturally, office days focus on face-to-face meetings, where teamwork and collaborative thinking generate innovation, new ideas, and a vibrant, interactive atmosphere. Requisition ID: 7556 Reporting into: Tech Manager Role Type: Individual Contributor About NiCE NICE Ltd. (NASDAQ: NICE) software products are used by 25,000+ global businesses, including 85 of the Fortune 100 corporations, to deliver extraordinary customer experiences, fight financial crime and ensure public safety. Every day, NiCE software manages more than 120 million customer interactions and monitors 3+ billion financial transactions. Known as an innovation powerhouse that excels in AI, cloud and digital, NiCE is consistently recognized as the market leader in its domains, with over 8,500 employees across 30+ countries. NiCE is proud to be an equal opportunity employer. All qualified applicants will receive consideration for employment without regard to race, color, religion, national origin, age, sex, marital status, ancestry, neurotype, physical or mental disability, veteran status, gender identity, sexual orientation or any other category protected by law. Show more Show less
Posted 1 day ago
8.0 - 14.0 years
0 Lacs
Gurugram, Haryana, India
On-site
About Company: GSPANN is a US California Bay Area-based consulting services provider focused on implementations in Enterprise Content Management, Business Intelligence & Mobile Solution initiatives. More than 90% of our current clientele are FORTUNE 1000 organizations. We specialize in strategy, architecture, delivery and support of solutions in the ECM, BI and Mobility space Position: Infra Engineer - Storage Experience: 8 Yrs - 15 Yrs Job Location: Hyderabad/ Gurgaon Job Summary: We are seeking a highly skilled and experienced Manager, Infrastructure Support to oversee our IT infrastructure operations. The ideal candidate will have a strong background in Windows Administration, VMWare, endpoint administration, Mobile Device Management (MDM), software management, SolarWinds, people management, and governance. Key Responsibilities: Storage Management: Design, implement, and manage SAN storage solutions, ensuring optimal performance and reliability. Splunk Monitoring: Utilize Splunk for monitoring and analyzing storage infrastructure performance and issues. Performance Optimization: Optimize storage systems for efficiency, including capacity planning and performance tuning. Issue Resolution: Troubleshoot and resolve storage-related issues, ensuring minimal downtime and maximum availability. Backup and Recovery: Implement and manage backup and recovery processes to ensure data integrity and availability. Security: Develop and maintain security measures for storage systems, including access controls and data encryption. Documentation: Document storage configurations, procedures, and protocols for reference and compliance. Collaboration: Work closely with IT teams to understand storage requirements and provide solutions. Updates: Stay updated with the latest storage technologies and implement necessary updates and upgrades. Required skills: Certifications: Relevant certifications such as Splunk, SAN, or other storage technologies are preferred. 8-14 years of experience in storage infrastructure engineering, including SAN storage and Splunk monitoring. Hands-on experience in troubleshooting and optimizing storage performance. Strong knowledge of SAN storage systems and principles. Proficiency in using Splunk for monitoring and analysis. Excellent problem-solving and analytical skills. Effective communication and teamwork abilities. Desired Skills: Experience with data conversion tools and techniques. Ability to advise on process accountability, data monitoring, and exception monitoring. Experience in managing and optimizing technical business performance, including automation and simplification of business processes Why choose GSPANN “We GSPANNians” are at the heart of the technology that we pioneer. We do not service our customers, we co-create. With the passion to explore solutions to the most challenging business problems, we support and mentor the technologist in everyone who is a part of our team. This translates into innovations that are path-breaking and inspirational for the marquee clients, we co-create a digital future with. GSPANN is a work environment where you are constantly encouraged to sharpen your abilities and shape your growth path, We support you to become the best version of yourself by feeding your curiosity, providing a nurturing environment, and giving ample opportunities to take ownership, experiment, learn and succeed. We’re a close-knit family of more than 1400 people that supports one another and celebrates successes, big or small. We work together, socialize together, and actively serve the communities we live in. We invite you to carry forward the baton of innovation in technology with us. At GSPANN, we do not service. We Co-create. Discover your inner technologist - Explore and expand the boundaries of tech innovation without the fear of failure. Accelerate your learning - Shape your career while scripting the future of tech. Seize the ample learning opportunities to grow at a rapid pace Feel included - At GSPANN, everyone is welcome. Age, gender, culture, and nationality do not matter here, what matters is YOU Inspire and Be Inspired - When you work with the experts, you raise your game. At GSPANN, you’re in the company of marquee clients and extremely talented colleagues Enjoy Life - We love to celebrate milestones and victories, big or small. Ever so often, we come together as one large GSPANN family Give Back - Together, we serve communities. We take steps, small and large so we can do good for the environment, weaving in sustainability and social change in our endeavors We invite you to carry forward the baton of innovation in technology with us. Let’s Co-create. Show more Show less
Posted 1 day ago
0.0 - 4.0 years
0 Lacs
Pune, Maharashtra
On-site
Experience required- 4-6 years Location - Noida/Pune/Bengaluru/Mumbai/Chennai Mode - Hybrid Notice Period - 0-15 Days Job Summary: The IT (Mac) Specialist will be responsible for supporting primarily Mac workstations & Laptops, performing software updates, Installation, imaging, setting up devices and more. Would be responsible for acting as the first line of technical support for our employees, as well as the go-to person for MAC OS related technical support. Job Description: Mandatory Skills Should have worked as an engineer providing support Apple MAC devices for a minimum of 4+ years. Preferably an Apple Certified Support Professional (ACSP). Hands on working knowledge of jamf Should be proficient in installing, configuring & troubleshooting enterprise level software on the MAC device such as DLP, CASB, EDR, office 365, SCCM Client etc. Should understand Proxy, WPAD settings & SMB on a MAC device. Should be comfortable in utilizing shell & its utilities, such as Ping, Traceroute, telnet etc. Should be proficient in upgrading OS & its security patches, along with security patches related to third party applications. Should be proficient in installing Network/Local printers as well as shared drives. Should have good knowledge on Mac M1/Intel chip, file system, storage, encryption, networking concepts. Job Types: Full-time, Permanent Pay: From ₹500,000.00 per year Ability to commute/relocate: Pune, Maharashtra: Reliably commute or willing to relocate with an employer-provided relocation package (Required) Application Question(s): What is your current location? What is your current CTC? What is your expected CTC? How many years of experience do you have in Apple MAC devices? Do you have experience in jamf? What is your notice period/ LWD? Education: Bachelor's (Preferred) Experience: total: 4 years (Required) Work Location: In person
Posted 1 day ago
5.0 years
0 Lacs
India
Remote
Job Type Full-time Description About CloudBees CloudBees enables enterprises to deliver scalable, compliant, and secure software, empowering developers to do their best work. Seamlessly integrating into any hybrid and heterogeneous environment, CloudBees is more than a tool—it's a strategic partner in your cloud transformation journey, ensuring security, compliance, and operational efficiency while enhancing the developer experience across your entire software development lifecycle. It allows developers to bring and execute their code anywhere, providing greater flexibility and freedom through fast, self-serve, and secure workflows. CloudBees supports organizations at every step of their DevSecOps journey, whether using Jenkins on-premise or transitioning software delivery to the cloud. We’re helping customers build the future, today. About The Role This is a remote position based in India, with a preference for candidates based in Chennai or Bangalore area. As a Software Engineer at CloudBees, you will be an essential contributor to the development of our industry-leading software products. You'll work within the Feature Management collaborative team environment to design, develop, and deliver high-quality solutions that empower our customers to produce software that helps customers manage their software rollouts and experiments within their products. What You'll Do Design, develop, and maintain security products that enable organizations to streamline their software development and delivery processes by delivering the Sec element of DevSecOps. This includes creating tools, plugins, and integrations that enhance the capabilities of the CloudBees product suite. Build applications and services on popular cloud platforms like AWS, and GCP. Utilize microservices architecture and containerization technologies (e.g., Docker, Kubernetes) to ensure scalability, resilience, and maintainability. Implement best practices for code quality, automated testing, and code reviews to ensure software reliability and performance. Write unit tests, integration tests, and perform code reviews to maintain high standards. Work on new feature development and product enhancements based on customer feedback and industry trends. Continuously innovate and propose improvements to existing software solutions. Analyze and address complex technical challenges and issues that arise during the software development lifecycle. Debug, troubleshoot, and resolve technical problems efficiently. Create and maintain technical documentation, including design specifications, user guides, and best practice guidelines. Share knowledge and contribute to internal and external technical communities. Participate in Agile ceremonies, such as sprint planning, stand-up meetings, and retrospectives. Collaborate with product managers, designers, and other engineers to ensure alignment and efficient project execution. Share your expertise and mentor engineers, helping them grow and develop their skills. Foster a culture of continuous learning and improvement within the team. Stay updated with the latest technologies, tools, and cloud computing. Proactively learn and adapt to new technologies to drive innovation. Collaborate with customers to understand their needs, gather feedback, and provide technical support and guidance as needed. Role Requirements Bachelor’s or master’s degree in computer science or a related technical field. 5+ years of experience in software engineering, with a significant focus on microservice development. Experience with our tech stack or equivalent: Golang (Must) / Java is nice to have. Experience of working with containerization technologies like Docker and Kubernetes. 3+ years of experience of either NoSQL, Graph or RDBMS technologies. Experienced of working in an Agile environment with grasp of: Scrum /Agile; Ticket management; Requirement traceability; Continuous Integration / Continuous Delivery; Dependency management. Strong knowledge and understanding of developing scalable and secure software in Golang (other lang) using concepts of transaction, caching, networking - client & server, cryptography, and encryption in Golang or related language. Experience with unit & integration tests is must, UI and API testing is preferable. Strong knowledge of cloud platforms (e.g., AWS, Azure) and advanced CI/CD practices. Proven ability to lead and guide technical projects and initiatives. Scam Notice Please be aware that there are individuals and organizations that may attempt to scam job seekers by offering fraudulent employment opportunities in the name of CloudBees. These scams may involve fake job postings, unsolicited emails, or messages claiming to be from our recruiters or hiring managers. Please note that CloudBees will never ask for any personal account information, such as cell phone, credit card details or bank account numbers, during the recruitment process. Additionally, CloudBees will never send you a check for any equipment prior to employment. All communication from our recruiters and hiring managers will come from official company email addresses (@cloudbees.com) or from Paylocity and will never ask for any payment, fee to be paid or purchases to be made by the job seeker. If you are contacted by anyone claiming to represent CloudBees and you are unsure of their authenticity, please do not provide any personal/financial information and contact us immediately at tahelp@cloudbees.com. We take these matters very seriously and will work to ensure that any fraudulent activity is reported and dealt with appropriately. If you feel like you have been scammed in the US, please report it to the Federal Trade Commission at: https://reportfraud.ftc.gov/#/. In Europe, please contact the European Anti-Fraud Office at: https://anti-fraud.ec.europa.eu/olaf-and-you/report-fraud_en Signs of a Recruitment Scam Ensure there are no other domains before or after @cloudbees.com. For example: “name.dr.cloudbees.com” Check any documents for poor spelling and grammar – this is often a sign that fraudsters are at work. If they provide a generic email address such as @Yahoo or @Hotmail as a point of contact. You are asked for money, an “administration fee”, “security fee” or an “accreditation fee”. You are asked for cell phone account information. You are asked to cash a check for “equipment” prior to start. You are offered a job offer immediately or without an interview. Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Kochi, Kerala, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Greater Bhopal Area
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Indore, Madhya Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Visakhapatnam, Andhra Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Chandigarh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Thiruvananthapuram, Kerala, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Dehradun, Uttarakhand, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Vijayawada, Andhra Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Mysore, Karnataka, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Patna, Bihar, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Pune/Pimpri-Chinchwad Area
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Noida, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Ghaziabad, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Agra, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Noida, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Chennai, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Coimbatore, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Vellore, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
7.0 years
40 Lacs
Madurai, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 1 day ago
Upload Resume
Drag or click to upload
Your data is secure with us, protected by advanced encryption.
Browse through a variety of job opportunities tailored to your skills and preferences. Filter by location, experience, salary, and more to find your perfect fit.
Accenture
36723 Jobs | Dublin
Wipro
11788 Jobs | Bengaluru
EY
8277 Jobs | London
IBM
6362 Jobs | Armonk
Amazon
6322 Jobs | Seattle,WA
Oracle
5543 Jobs | Redwood City
Capgemini
5131 Jobs | Paris,France
Uplers
4724 Jobs | Ahmedabad
Infosys
4329 Jobs | Bangalore,Karnataka
Accenture in India
4290 Jobs | Dublin 2