Get alerts for new jobs matching your selected skills, preferred locations, and experience range.
1.0 years
0 Lacs
Chennai, Tamil Nadu, India
On-site
About the Job We are looking for a Social Media Optimizer (SMO) who can manage social media platforms and actively convert leads through Direct Messages (DMs) . The candidate should have at least 1 year of experience working in a personal branding agency or a digital marketing agency and should have basic knowledge of sales and lead handling. Location: On-site (Chennai) Key Responsibilities Plan, create, and manage engaging content across Instagram, Facebook, LinkedIn, and WhatsApp . Handle DM conversations efficiently and convert potential leads into paying customers. Set up Manychat automations and also handle manual DM lead follow-ups. Optimize social media profiles and posts to improve visibility and lead generation. Strategically engage with followers through comments, stories, and DM to build relationships. Respond quickly to inbound leads and nurture them till closure. Track, update, and maintain a lead sheet or CRM with detailed follow-up status. Regularly report DM conversion rates and lead performance. Qualifications Bachelor’s degree in Marketing, Communications, or related field. Knowledge of CRM tools like Google Sheets, Notion, or Hubspot is a bonus. Experience working with personal brands or creators is an advantage. Eligibility Minimum 1 year of experience working in a personal branding company or a digital marketing agency. Prior experience in handling DMs and converting social media leads is preferred. Basic understanding of sales funnels, customer needs, and closing techniques. Required Skills Strong chat-based communication skills (friendly + persuasive tone). Ability to build trust, handle objections, and close sales via DM. Good understanding of Instagram & Facebook growth strategies. Basic sales knowledge – should know about lead conversion steps and customer journey. Familiarity with Manychat, Auto DM setups, and lead tracking tools . Canva / basic design skills are a plus. Consistent and timely in following up leads. Must-Have Soft Skills Empathy and patience in conversations. Proactiveness in handling leads without reminders. Strong listening and problem-solving ability. Ability to balance friendly chats with professional selling. Show more Show less
Posted 18 hours ago
0 years
0 Lacs
Sinnar, Maharashtra, India
On-site
Basic Function Responsible for the operations of independent production lines as well as finished Goods packing. Responsible for administration job of production department, backup for production data statistics. Continuously improve performance on safety, quality and productivity. Roles & Responsibilities Follow HSE regulation and rules in daily operation, achieve Goal Zero target. Manage the day to day line operations as per the process order. Activities likes line start up, changeovers, line operation, finished Goods packing etc should be handelled with quality of product. Responsible to verify and ensure packaging of Finished Goods with zero defect in quality of product. Responsible for recording to verify each and every finished bags such as cross contamination, stitching and stacking of Finished Goods. Keep good housekeeping in shopfloor to maintain workplace in a required basic condition. Performs the duties of the reliever in the production department, maintain proper records of manpower availability during shifts and ensure report to shift leader. Monitor and maintain equipment operation conditions/calibrations of auto-baging machine, stitching machine, weighing scale etc. to eliminate any irregularities. Resonsible for product identification on finished Goods (Product labelling) Responsible to conduct grade changeover activities by cleaning the equipment as per SOPs. Participation Lean /VEP activities, OE assesments etc. Min. Qualifications Diploma in Plastic or polymer from reputed college or university. Work Experience Minimum One Year Of Relevant Experience. Critical Competencies or Skills Awarenss of IATF 16949:2016 and EMS 14001:2015 standards Basic knowledge of MS Office Good written and verbal communication skill Competencies Build Partnerships Deliver Results Drive Innovation Grow Capabilities Promote Inclusion Motivational Fit Technical Skills Show more Show less
Posted 18 hours ago
7.0 years
40 Lacs
India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 18 hours ago
3.0 - 4.0 years
0 Lacs
Panaji, Goa
On-site
Position : Mechanical Engineer Location : Goa Experience : 3-4 Years Number of Openings : 1 Job Location : Goa Salary : Best In the Industry Notice Period : Immediate Joiners Will Be Preferred Preferred Qualification : BE / B.Tech / ME / M.Tech Working Hours : 1:30 PM to 10:30 PM REQUIREMENTS Key Skills SolidWorks AutoCAD GD&T ASME Codes MS Excel / Word Metal Manufacturing Knowledge Expert in 3D Modelling (SolidWorks) Auto Pneumatic/Solenoid Valves Selection Pipe, Pump, and Compressor Sizing Fluid and Thermodynamics Knowledge Process Plant Automation (Beneficial) Open Mindset and Willingness to Learn CFD Responsibilities And Duties Design New Engineering Products And Processes Collaborate With Internal Teams To Deliver Efficient Designs On Time Maintain Work Logs, Revision Control, And Write Experimental Reports Connect With Vendors, Manufacturers, And Subcontractors To Meet Deadlines Prepare Testing Protocols For Design Systems And Equipment Create Models And Drawings Using CAD Analyze Prototype Data And Retest As Needed Research New Product Ideas And Methods Improve Existing Products And Processes Ensure Compliance With Industry Safety Standards Maintain Accurate Records And Write Detailed Reports Serve As A Technical Expert And Provide Support Find Creative Design Solutions And Present Them To Team And Project Managers Skills And Qualifications Understanding Of ASME Section VIII Division 1, 2 & 3 Skilled In Pipe System Design, Troubleshooting, And Valve Types (Ball, Gate, Globe, Butterfly, Plug, Check, Etc.) Knowledgeable In ASME Piping Standards (B16, 31, 36) Ability To Perform Pressure Vessel Calculations Create Data Sheets, Technical Specifications, And Technical Bid Evaluations Deep Understanding Of Materials And Corrosion Proficient In Equipment Layout And Process Piping Isometric Drawings Generate 2D Piping And Instrumentation Diagrams (P&ID) Awareness Of Industrial Systems And Manufacturing Processes Excellent Troubleshooting And Communication Skills Attention To Detail About Us Enigmasoft Technologies is a forward-thinking IT and engineering solutions provider. Specializing in innovative, sustainable tech, the company helps businesses optimize operations and improve efficiency through tailored solutions. With a focus on both software and hardware engineering, Enigmasoft delivers high-quality, cutting-edge products across various industries, ensuring clients achieve their goals with advanced technology. The company's commitment to R&D ensures they stay at the forefront of technological advancements, driving progress and delivering excellence globally. Our Culture We Are Committed To A Professional And Supportive Environment With A Strong Focus On Work-Life Balance. Our Diverse Workplace Fosters Creativity And Innovation While Promoting A Healthy Gender Balance. Why You Should Join Us Working At Enigmasoft Technologies Is Rewarding! Join Us To Grow, Develop, And Be Part Of An Incredible Journey Where You Can Take On Roles Beyond A Job Description. Employee Benefits Insurance Benefits : Medical (Self, Spouse, And Children), Accidental Insurance Leave Benefits : Maternity, Paternity, Bereavement, Marriage, Sick, Casual, And Privilege Leaves Retirement Benefits : PF Contribution, Leave Encashment How To Apply Interested Candidates Can Apply Online At https://enigma.keka.com/careers Or Share Their Profile At hr@enigma-tech.io . Website : www.enigma-tech.io Job Types: Full-time, Permanent Pay: ₹50,000.00 - ₹80,000.00 per month Benefits: Health insurance Leave encashment Paid sick time Paid time off Provident Fund Schedule: Day shift Monday to Friday UK shift Work Location: In person
Posted 18 hours ago
7.0 years
40 Lacs
Kochi, Kerala, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 18 hours ago
7.0 years
40 Lacs
Greater Bhopal Area
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Indore, Madhya Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Visakhapatnam, Andhra Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Chandigarh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Thiruvananthapuram, Kerala, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Dehradun, Uttarakhand, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Vijayawada, Andhra Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Mysore, Karnataka, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Patna, Bihar, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
37.0 years
0 Lacs
Mumbai, Maharashtra, India
Remote
Wanted: Rural Activation Strategists Who Can Think Beyond the Billboard! About MarketMen With 37+ years of experience in activations, branding, and engagement, MarketMen has delivered 1,000+ campaigns across India. From rural heartlands to urban hubs — we bring brand stories to life on-ground. Role Description. This is a contract role for a Concept & Strategy professional, with a focus on rural activations. Freelancers are welcome to apply. The role is remote. Responsibilities include creating and executing brand-specific IPs, events, and marketing strategies aimed at rural audiences. Day-to-day tasks involve ideation, planning, coordination with multiple teams, tracking campaign progress via our MMCRM application, and ensuring flawless execution of activation programs. At MarketMen.in , we believe rural India isn’t just a market — it’s a movement. We’re on the lookout for Conceptual Thinkers & Strategy Experts who can craft impactful rural outreach campaigns that drive brand visibility and genuine engagement. Whether you're an independent consultant, creative freelancer, or strategist , if you understand rural mindsets and love solving for Bharat — we want to hear from you. What You'll Be Doing: Creating disruptive and scalable rural marketing strategies Ideating brand-specific on-ground activations , van campaigns, village sabhas, haat engagements, etc. Mapping regional insights with customized concepts for product categories Collaborating with creative & ops teams to deliver executable plans Who We're Looking For: Strong background in rural marketing, brand strategy, or experiential campaigns Experience with FMCG, Agri-products, finance, or auto sector preferred Clear understanding of tier 3/4 audience behaviours Freelancers or agency partner’s welcome Qualifications Experience in concept development and strategic planning Background in event management and rural marketing Ability to coordinate and manage multiple campaigns and teams Proficiency in using tracking tools like MMCRM Excellent communication and organizational skills Ability to work independently and remotely Experience in experiential and retail branding is a plus Bachelor's degree in Marketing, Event Management, or a related field is preferred Apply now: hr@marketmen.in Freelance | Part-Time | Flexible | Work-from-anywhere Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Pune/Pimpri-Chinchwad Area
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Noida, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Ghaziabad, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Agra, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Noida, Uttar Pradesh, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Chennai, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Coimbatore, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Vellore, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Madurai, Tamil Nadu, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
7.0 years
40 Lacs
Surat, Gujarat, India
Remote
Experience : 7.00 + years Salary : INR 4000000.00 / year (based on experience) Expected Notice Period : 15 Days Shift : (GMT+05:30) Asia/Kolkata (IST) Opportunity Type : Remote Placement Type : Full Time Permanent position(Payroll and Compliance to be managed by: MatchMove) (*Note: This is a requirement for one of Uplers' client - MatchMove) What do you need for this opportunity? Must have skills required: Gen AI, AWS data stack, Kinesis, open table format, Pyspark, stream processing, Kafka, MySQL, Python MatchMove is Looking for: Technical Lead - Data Platform Data, you will architect, implement, and scale our end-to-end data platform built on AWS S3, Glue, Lake Formation, and DMS. You will lead a small team of engineers while working cross-functionally with stakeholders from fraud, finance, product, and engineering to enable reliable, timely, and secure data access across the business. You will champion best practices in data design, governance, and observability, while leveraging GenAI tools to improve engineering productivity and accelerate time to insight. You will contribute to Owning the design and scalability of the data lake architecture for both streaming and batch workloads, leveraging AWS-native services. Leading the development of ingestion, transformation, and storage pipelines using AWS Glue, DMS, Kinesis/Kafka, and PySpark. Structuring and evolving data into OTF formats (Apache Iceberg, Delta Lake) to support real-time and time-travel queries for downstream services. Driving data productization, enabling API-first and self-service access to curated datasets for fraud detection, reconciliation, and reporting use cases. Defining and tracking SLAs and SLOs for critical data pipelines, ensuring high availability and data accuracy in a regulated fintech environment. Collaborating with InfoSec, SRE, and Data Governance teams to enforce data security, lineage tracking, access control, and compliance (GDPR, MAS TRM). Using Generative AI tools to enhance developer productivity — including auto-generating test harnesses, schema documentation, transformation scaffolds, and performance insights. Mentoring data engineers, setting technical direction, and ensuring delivery of high-quality, observable data pipelines. Responsibilities:: Architect scalable, cost-optimized pipelines across real-time and batch paradigms, using tools such as AWS Glue, Step Functions, Airflow, or EMR. Manage ingestion from transactional sources using AWS DMS, with a focus on schema drift handling and low-latency replication. Design efficient partitioning, compression, and metadata strategies for Iceberg or Hudi tables stored in S3, and cataloged with Glue and Lake Formation. Build data marts, audit views, and analytics layers that support both machine-driven processes (e.g. fraud engines) and human-readable interfaces (e.g. dashboards). Ensure robust data observability with metrics, alerting, and lineage tracking via OpenLineage or Great Expectations. Lead quarterly reviews of data cost, performance, schema evolution, and architecture design with stakeholders and senior leadership. Enforce version control, CI/CD, and infrastructure-as-code practices using GitOps and tools like Terraform. Requirements At-least 7 years of experience in data engineering. Deep hands-on experience with AWS data stack: Glue (Jobs & Crawlers), S3, Athena, Lake Formation, DMS, and Redshift Spectrum Expertise in designing data pipelines for real-time, streaming, and batch systems, including schema design, format optimization, and SLAs. Strong programming skills in Python (PySpark) and advanced SQL for analytical processing and transformation. Proven experience managing data architectures using open table formats (Iceberg, Delta Lake, Hudi) at scale Understanding of stream processing with Kinesis/Kafka and orchestration via Airflow or Step Functions. Experience implementing data access controls, encryption policies, and compliance workflows in regulated environments. Ability to integrate GenAI tools into data engineering processes to drive measurable productivity and quality gains — with strong engineering hygiene. Demonstrated ability to lead teams, drive architectural decisions, and collaborate with cross-functional stakeholders. Brownie Points:: Experience working in a PCI DSS or any other central bank regulated environment with audit logging and data retention requirements. Experience in the payments or banking domain, with use cases around reconciliation, chargeback analysis, or fraud detection. Familiarity with data contracts, data mesh patterns, and data as a product principles. Experience using GenAI to automate data documentation, generate data tests, or support reconciliation use cases. Exposure to performance tuning and cost optimization strategies in AWS Glue, Athena, and S3. Experience building data platforms for ML/AI teams or integrating with model feature stores. Engagement Model: : Direct placement with client This is remote role Shift timings ::10 AM to 7 PM How to apply for this opportunity? Step 1: Click On Apply! And Register or Login on our portal. Step 2: Complete the Screening Form & Upload updated Resume Step 3: Increase your chances to get shortlisted & meet the client for the Interview! About Uplers: Our goal is to make hiring reliable, simple, and fast. Our role will be to help all our talents find and apply for relevant contractual onsite opportunities and progress in their career. We will support any grievances or challenges you may face during the engagement. (Note: There are many more opportunities apart from this on the portal. Depending on the assessments you clear, you can apply for them as well). So, if you are ready for a new challenge, a great work environment, and an opportunity to take your career to the next level, don't hesitate to apply today. We are waiting for you! Show more Show less
Posted 19 hours ago
Upload Resume
Drag or click to upload
Your data is secure with us, protected by advanced encryption.
Browse through a variety of job opportunities tailored to your skills and preferences. Filter by location, experience, salary, and more to find your perfect fit.
Accenture
36723 Jobs | Dublin
Wipro
11788 Jobs | Bengaluru
EY
8277 Jobs | London
IBM
6362 Jobs | Armonk
Amazon
6322 Jobs | Seattle,WA
Oracle
5543 Jobs | Redwood City
Capgemini
5131 Jobs | Paris,France
Uplers
4724 Jobs | Ahmedabad
Infosys
4329 Jobs | Bangalore,Karnataka
Accenture in India
4290 Jobs | Dublin 2