Are you sure you don't want to discover the perfect job opportunity? At JobPe, we help you
find the best career matches,
tailored to your skills and preferences. Don’t miss out on your dream job!
Login to
Please Verify Your Phone or Email
We have sent an OTP to your
contact. Please enter it below to verify.
Don't
have an
account yet? Sign
up
Already
have an
account?
Login
Alert
Your message here...
Confirm Action
Your notification message here...
Contact Us
For any questions
or assistance regarding
Customer Support,
Sales Inquiries, Technical Support, or General Inquiries,
our AI-powered team is here to help!
Swift Concurrency introduces: 1) async/await for asynchronous code, 2) Structured concurrency with tasks, 3) Actor model for state isolation, 4) Improved error handling, 5) Better code readability compared to completion handlers, 6) Built-in deadlock prevention. Unlike GCD, it provides compile-time checking and safer concurrency patterns.
Actors provide: 1) Data race protection through isolation, 2) Synchronized access to mutable state, 3) Serial execution of methods, 4) Async interface for external access, 5) Safe state management across tasks, 6) Reference type semantics. Use actors when shared mutable state needs thread-safe access.
async/await provides: 1) Structured approach to asynchronous code, 2) Elimination of completion handler pyramids, 3) Linear code flow for async operations, 4) Automatic error propagation, 5) Integration with throwing functions, 6) Better stack traces. Solves callback hell and improves code readability.
Tasks represent: 1) Units of asynchronous work, 2) Structured task hierarchies, 3) Cancellation support, 4) Priority management, 5) Task-local storage, 6) Task groups for parallel execution. Tasks provide structured approach to managing concurrent operations.
GCD features: 1) Queue-based task execution, 2) Serial and concurrent queues, 3) Quality of service levels, 4) Dispatch groups for synchronization, 5) Barrier flags for synchronization, 6) Semaphores for resource management. Provides low-level concurrency primitives.
AsyncSequence/AsyncStream provide: 1) Asynchronous iteration over values, 2) Back-pressure handling, 3) Cancellation support, 4) Integration with for-await-in loops, 5) Buffer control, 6) Continuation handling. Used for handling streams of asynchronous values.
@MainActor ensures: 1) Code runs on main thread, 2) UI updates are safe, 3) State isolation for main thread, 4) Automatic thread switching, 5) Compile-time checking, 6) Integration with async/await. Use for UI-related code and main thread operations.
Concurrent data access patterns: 1) Using actors for isolation, 2) Implementing thread-safe properties, 3) Queue-based synchronization, 4) Read-write patterns, 5) Lock mechanisms, 6) Copy-on-write for value types. Ensures thread-safe data access.
Task Groups enable: 1) Parallel task execution, 2) Dynamic task creation, 3) Result collection, 4) Error handling, 5) Cancellation propagation, 6) Resource limiting. Used for managing multiple concurrent tasks with similar purpose.
Async testing includes: 1) Using async test methods, 2) Implementing expectations, 3) Testing actor isolation, 4) Simulating delays, 5) Testing cancellation, 6) Verifying async sequences. Ensures proper testing of concurrent code.
Sendable protocol ensures: 1) Safe cross-actor data transfer, 2) Value type conformance, 3) Thread-safe reference types, 4) Compile-time checking, 5) Actor isolation preservation, 6) Concurrent data safety. Used for safe data sharing between concurrent contexts.
Concurrent state machines: 1) Actor-based state management, 2) Thread-safe transitions, 3) Event handling, 4) State validation, 5) Error handling, 6) State observation. Ensures safe state management.
Actors provide: 1) Data race protection through isolation, 2) Synchronized access to mutable state, 3) Serial execution of methods, 4) Async interface for external access, 5) Safe state management across tasks, 6) Reference type semantics. Use actors when shared mutable state needs thread-safe access.
async/await provides: 1) Structured approach to asynchronous code, 2) Elimination of completion handler pyramids, 3) Linear code flow for async operations, 4) Automatic error propagation, 5) Integration with throwing functions, 6) Better stack traces. Solves callback hell and improves code readability.
Tasks represent: 1) Units of asynchronous work, 2) Structured task hierarchies, 3) Cancellation support, 4) Priority management, 5) Task-local storage, 6) Task groups for parallel execution. Tasks provide structured approach to managing concurrent operations.
GCD features: 1) Queue-based task execution, 2) Serial and concurrent queues, 3) Quality of service levels, 4) Dispatch groups for synchronization, 5) Barrier flags for synchronization, 6) Semaphores for resource management. Provides low-level concurrency primitives.
AsyncSequence/AsyncStream provide: 1) Asynchronous iteration over values, 2) Back-pressure handling, 3) Cancellation support, 4) Integration with for-await-in loops, 5) Buffer control, 6) Continuation handling. Used for handling streams of asynchronous values.
@MainActor ensures: 1) Code runs on main thread, 2) UI updates are safe, 3) State isolation for main thread, 4) Automatic thread switching, 5) Compile-time checking, 6) Integration with async/await. Use for UI-related code and main thread operations.
Concurrent data access patterns: 1) Using actors for isolation, 2) Implementing thread-safe properties, 3) Queue-based synchronization, 4) Read-write patterns, 5) Lock mechanisms, 6) Copy-on-write for value types. Ensures thread-safe data access.
Task Groups enable: 1) Parallel task execution, 2) Dynamic task creation, 3) Result collection, 4) Error handling, 5) Cancellation propagation, 6) Resource limiting. Used for managing multiple concurrent tasks with similar purpose.
Async testing includes: 1) Using async test methods, 2) Implementing expectations, 3) Testing actor isolation, 4) Simulating delays, 5) Testing cancellation, 6) Verifying async sequences. Ensures proper testing of concurrent code.
Sendable protocol ensures: 1) Safe cross-actor data transfer, 2) Value type conformance, 3) Thread-safe reference types, 4) Compile-time checking, 5) Actor isolation preservation, 6) Concurrent data safety. Used for safe data sharing between concurrent contexts.
Explore a wide range of interview questions for freshers and professionals, covering technical, business, HR, and management skills, designed to help you succeed in your job interview.
Are these questions suitable for beginners?
Yes, the questions include beginner-friendly content for freshers, alongside advanced topics for experienced professionals, catering to all career levels.
How can I prepare for technical interviews?
Access categorized technical questions with detailed answers, covering coding, algorithms, and system design to boost your preparation.
Are there resources for business and HR interviews?
Find tailored questions for business roles (e.g., finance, marketing) and HR roles (e.g., recruitment, leadership), perfect for diverse career paths.
Can I prepare for specific roles like consulting or management?
Yes, the platform offers role-specific questions, including case studies for consulting and strategic questions for management positions.
How often are the interview questions updated?
Questions are regularly updated to align with current industry trends and hiring practices, ensuring relevance.
Are there free resources for interview preparation?
Free access is available to a variety of questions, with optional premium resources for deeper insights.
How does this platform help with interview success?
Get expert-crafted questions, detailed answers, and tips, organized by category, to build confidence and perform effectively in interviews.